3.263 \(\int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=189 \[ -\frac {(2 A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {\left (a^2 A+a b B-2 A b^2\right ) \tan (c+d x)}{a^2 d \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+a b^2 B-2 A b^3\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 d (a-b)^{3/2} (a+b)^{3/2}} \]

[Out]

2*b*(3*A*a^2*b-2*A*b^3-2*B*a^3+B*a*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^3/(a-b)^(3/2)/(a+
b)^(3/2)/d-(2*A*b-B*a)*arctanh(sin(d*x+c))/a^3/d+(A*a^2-2*A*b^2+B*a*b)*tan(d*x+c)/a^2/(a^2-b^2)/d+b*(A*b-B*a)*
tan(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.67, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3000, 3055, 3001, 3770, 2659, 205} \[ \frac {2 b \left (3 a^2 A b-2 a^3 B+a b^2 B-2 A b^3\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 d (a-b)^{3/2} (a+b)^{3/2}}+\frac {\left (a^2 A+a b B-2 A b^2\right ) \tan (c+d x)}{a^2 d \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {(2 A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^3 d} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + b*Cos[c + d*x])^2,x]

[Out]

(2*b*(3*a^2*A*b - 2*A*b^3 - 2*a^3*B + a*b^2*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b
)^(3/2)*(a + b)^(3/2)*d) - ((2*A*b - a*B)*ArcTanh[Sin[c + d*x]])/(a^3*d) + ((a^2*A - 2*A*b^2 + a*b*B)*Tan[c +
d*x])/(a^2*(a^2 - b^2)*d) + (b*(A*b - a*B)*Tan[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3000

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b^2 - a*b*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*
Sin[e + f*x])^(1 + n))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m
 + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n,
-1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=\frac {b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {\left (a^2 A-2 A b^2+a b B-a (A b-a B) \cos (c+d x)+b (A b-a B) \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {\left (a^2 A-2 A b^2+a b B\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d}+\frac {b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {\left (-\left (a^2-b^2\right ) (2 A b-a B)+a b (A b-a B) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac {\left (a^2 A-2 A b^2+a b B\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d}+\frac {b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {(2 A b-a B) \int \sec (c+d x) \, dx}{a^3}+\frac {\left (b \left (3 a^2 A b-2 A b^3-2 a^3 B+a b^2 B\right )\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{a^3 \left (a^2-b^2\right )}\\ &=-\frac {(2 A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {\left (a^2 A-2 A b^2+a b B\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d}+\frac {b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\left (2 b \left (3 a^2 A b-2 A b^3-2 a^3 B+a b^2 B\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^3 \left (a^2-b^2\right ) d}\\ &=\frac {2 b \left (3 a^2 A b-2 A b^3-2 a^3 B+a b^2 B\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{3/2} (a+b)^{3/2} d}-\frac {(2 A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {\left (a^2 A-2 A b^2+a b B\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d}+\frac {b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.95, size = 240, normalized size = 1.27 \[ \frac {-\frac {2 b \left (2 a^3 B-3 a^2 A b-a b^2 B+2 A b^3\right ) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}+\frac {a b^2 (a B-A b) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}+a A \tan (c+d x)-a B \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+a B \log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )+2 A b \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 A b \log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}{a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + b*Cos[c + d*x])^2,x]

[Out]

((-2*b*(-3*a^2*A*b + 2*A*b^3 + 2*a^3*B - a*b^2*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2
+ b^2)^(3/2) + 2*A*b*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - a*B*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] -
 2*A*b*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + a*B*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a*b^2*(-(A*b
) + a*B)*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])) + a*A*Tan[c + d*x])/(a^3*d)

________________________________________________________________________________________

fricas [B]  time = 21.47, size = 1088, normalized size = 5.76 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*(((2*B*a^3*b^2 - 3*A*a^2*b^3 - B*a*b^4 + 2*A*b^5)*cos(d*x + c)^2 + (2*B*a^4*b - 3*A*a^3*b^2 - B*a^2*b^3
+ 2*A*a*b^4)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a
^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) -
((B*a^5*b - 2*A*a^4*b^2 - 2*B*a^3*b^3 + 4*A*a^2*b^4 + B*a*b^5 - 2*A*b^6)*cos(d*x + c)^2 + (B*a^6 - 2*A*a^5*b -
 2*B*a^4*b^2 + 4*A*a^3*b^3 + B*a^2*b^4 - 2*A*a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + ((B*a^5*b - 2*A*a^4*
b^2 - 2*B*a^3*b^3 + 4*A*a^2*b^4 + B*a*b^5 - 2*A*b^6)*cos(d*x + c)^2 + (B*a^6 - 2*A*a^5*b - 2*B*a^4*b^2 + 4*A*a
^3*b^3 + B*a^2*b^4 - 2*A*a*b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(A*a^6 - 2*A*a^4*b^2 + A*a^2*b^4 + (A
*a^5*b + B*a^4*b^2 - 3*A*a^3*b^3 - B*a^2*b^4 + 2*A*a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^7*b - 2*a^5*b^3 + a^
3*b^5)*d*cos(d*x + c)^2 + (a^8 - 2*a^6*b^2 + a^4*b^4)*d*cos(d*x + c)), -1/2*(2*((2*B*a^3*b^2 - 3*A*a^2*b^3 - B
*a*b^4 + 2*A*b^5)*cos(d*x + c)^2 + (2*B*a^4*b - 3*A*a^3*b^2 - B*a^2*b^3 + 2*A*a*b^4)*cos(d*x + c))*sqrt(a^2 -
b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - ((B*a^5*b - 2*A*a^4*b^2 - 2*B*a^3*b^3 + 4*
A*a^2*b^4 + B*a*b^5 - 2*A*b^6)*cos(d*x + c)^2 + (B*a^6 - 2*A*a^5*b - 2*B*a^4*b^2 + 4*A*a^3*b^3 + B*a^2*b^4 - 2
*A*a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + ((B*a^5*b - 2*A*a^4*b^2 - 2*B*a^3*b^3 + 4*A*a^2*b^4 + B*a*b^5
- 2*A*b^6)*cos(d*x + c)^2 + (B*a^6 - 2*A*a^5*b - 2*B*a^4*b^2 + 4*A*a^3*b^3 + B*a^2*b^4 - 2*A*a*b^5)*cos(d*x +
c))*log(-sin(d*x + c) + 1) - 2*(A*a^6 - 2*A*a^4*b^2 + A*a^2*b^4 + (A*a^5*b + B*a^4*b^2 - 3*A*a^3*b^3 - B*a^2*b
^4 + 2*A*a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^7*b - 2*a^5*b^3 + a^3*b^5)*d*cos(d*x + c)^2 + (a^8 - 2*a^6*b^2
 + a^4*b^4)*d*cos(d*x + c))]

________________________________________________________________________________________

giac [B]  time = 0.80, size = 404, normalized size = 2.14 \[ \frac {\frac {2 \, {\left (2 \, B a^{3} b - 3 \, A a^{2} b^{2} - B a b^{3} + 2 \, A b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{5} - a^{3} b^{2}\right )} \sqrt {a^{2} - b^{2}}} - \frac {2 \, {\left (A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )} {\left (a^{4} - a^{2} b^{2}\right )}} + \frac {{\left (B a - 2 \, A b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {{\left (B a - 2 \, A b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

(2*(2*B*a^3*b - 3*A*a^2*b^2 - B*a*b^3 + 2*A*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(
a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^5 - a^3*b^2)*sqrt(a^2 - b^2)) - 2*(A*a^
3*tan(1/2*d*x + 1/2*c)^3 - A*a^2*b*tan(1/2*d*x + 1/2*c)^3 - A*a*b^2*tan(1/2*d*x + 1/2*c)^3 - B*a*b^2*tan(1/2*d
*x + 1/2*c)^3 + 2*A*b^3*tan(1/2*d*x + 1/2*c)^3 + A*a^3*tan(1/2*d*x + 1/2*c) + A*a^2*b*tan(1/2*d*x + 1/2*c) - A
*a*b^2*tan(1/2*d*x + 1/2*c) + B*a*b^2*tan(1/2*d*x + 1/2*c) - 2*A*b^3*tan(1/2*d*x + 1/2*c))/((a*tan(1/2*d*x + 1
/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 + 2*b*tan(1/2*d*x + 1/2*c)^2 - a - b)*(a^4 - a^2*b^2)) + (B*a - 2*A*b)*log(
abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - (B*a - 2*A*b)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3)/d

________________________________________________________________________________________

maple [B]  time = 0.18, size = 502, normalized size = 2.66 \[ -\frac {2 b^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A}{d \,a^{2} \left (a^{2}-b^{2}\right ) \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}+\frac {2 b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B}{d a \left (a^{2}-b^{2}\right ) \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}+\frac {6 b^{2} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) A}{d a \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {4 b^{4} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) A}{d \,a^{3} \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {4 \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) B b}{d \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 b^{3} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right ) B}{d \,a^{2} \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {A}{d \,a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) A b}{d \,a^{3}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) B}{d \,a^{2}}-\frac {A}{d \,a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) A b}{d \,a^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) B}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x)

[Out]

-2/d*b^3/a^2/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)*A+2/d*b^2/a/(a^2
-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)*B+6/d*b^2/a/(a-b)/(a+b)/((a-b)*(a
+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A-4/d*b^4/a^3/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*
arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A-4/d/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+
1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*B*b+2/d*b^3/a^2/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a
-b)/((a-b)*(a+b))^(1/2))*B-1/d/a^2*A/(tan(1/2*d*x+1/2*c)-1)+2/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)*A*b-1/d/a^2*ln(ta
n(1/2*d*x+1/2*c)-1)*B-1/d/a^2*A/(tan(1/2*d*x+1/2*c)+1)-2/d/a^3*ln(tan(1/2*d*x+1/2*c)+1)*A*b+1/d/a^2*ln(tan(1/2
*d*x+1/2*c)+1)*B

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 8.52, size = 5464, normalized size = 28.91 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^2*(a + b*cos(c + d*x))^2),x)

[Out]

(atan(((((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*b^7 - 2*B^2*a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3
*b^5 + 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^2*b^6 - 2*B^2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a
^5*b^3 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*b^6 + 18*A*B*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a
^5*b^3 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) + (((32*(A*a^7*b^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8
*b^4 - 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 + B*a^10*b^2 + 2*A*a^11*b + 2*B*a^11*b))/(a^8*b +
a^9 - a^6*b^3 - a^7*b^2) + (32*tan(c/2 + (d*x)/2)*(2*A*b - B*a)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4
- 4*a^9*b^3 - 2*a^10*b^2))/(a^3*(a^6*b + a^7 - a^4*b^3 - a^5*b^2)))*(2*A*b - B*a))/a^3)*(2*A*b - B*a)*1i)/a^3
+ (((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*b^7 - 2*B^2*a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3*b^5
+ 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^2*b^6 - 2*B^2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^
3 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*b^6 + 18*A*B*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^
3 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) - (((32*(A*a^7*b^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8*b^4
- 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 + B*a^10*b^2 + 2*A*a^11*b + 2*B*a^11*b))/(a^8*b + a^9 -
 a^6*b^3 - a^7*b^2) - (32*tan(c/2 + (d*x)/2)*(2*A*b - B*a)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4 - 4*a
^9*b^3 - 2*a^10*b^2))/(a^3*(a^6*b + a^7 - a^4*b^3 - a^5*b^2)))*(2*A*b - B*a))/a^3)*(2*A*b - B*a)*1i)/a^3)/((64
*(8*A^3*b^8 - 4*A^3*a*b^7 - 2*B^3*a^7*b - 20*A^3*a^2*b^6 + 6*A^3*a^3*b^5 + 12*A^3*a^4*b^4 - B^3*a^3*b^5 + B^3*
a^4*b^4 + 3*B^3*a^5*b^3 - 2*B^3*a^6*b^2 - 12*A^2*B*a*b^7 + 6*A*B^2*a^2*b^6 - 5*A*B^2*a^3*b^5 - 17*A*B^2*a^4*b^
4 + 9*A*B^2*a^5*b^3 + 11*A*B^2*a^6*b^2 + 8*A^2*B*a^2*b^6 + 32*A^2*B*a^3*b^5 - 13*A^2*B*a^4*b^4 - 20*A^2*B*a^5*
b^3))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) + (((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*b^7 - 2*B^2*
a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3*b^5 + 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^2*b^6 - 2*B^
2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^3 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*b^6 + 18*A*B
*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^3 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) + (((32*(A*a^7*b
^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8*b^4 - 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 + B*a^10*b^2 +
2*A*a^11*b + 2*B*a^11*b))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) + (32*tan(c/2 + (d*x)/2)*(2*A*b - B*a)*(2*a^11*b -
 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/(a^3*(a^6*b + a^7 - a^4*b^3 - a^5*b^2)))*(2*A*b
- B*a))/a^3)*(2*A*b - B*a))/a^3 - (((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*b^7 - 2*B^2*a^7*b -
16*A^2*a^2*b^6 + 16*A^2*a^3*b^5 + 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^2*b^6 - 2*B^2*a^3*b^
5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^3 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*b^6 + 18*A*B*a^3*b^5
 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^3 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) - (((32*(A*a^7*b^5 - 2*A
*a^6*b^6 - B*a^12 + 5*A*a^8*b^4 - 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 + B*a^10*b^2 + 2*A*a^11
*b + 2*B*a^11*b))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) - (32*tan(c/2 + (d*x)/2)*(2*A*b - B*a)*(2*a^11*b - 2*a^6*b
^6 + 2*a^7*b^5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/(a^3*(a^6*b + a^7 - a^4*b^3 - a^5*b^2)))*(2*A*b - B*a))/
a^3)*(2*A*b - B*a))/a^3))*(2*A*b - B*a)*2i)/(a^3*d) - ((2*tan(c/2 + (d*x)/2)^3*(A*a*b^2 - 2*A*b^3 - A*a^3 + A*
a^2*b + B*a*b^2))/(a^2*(a + b)*(a - b)) - (2*tan(c/2 + (d*x)/2)*(A*a^3 - 2*A*b^3 - A*a*b^2 + A*a^2*b + B*a*b^2
))/(a^2*(a + b)*(a - b)))/(d*(a + b - tan(c/2 + (d*x)/2)^4*(a - b) - 2*b*tan(c/2 + (d*x)/2)^2)) + (b*atan(((b*
((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*b^7 - 2*B^2*a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3*b^5 + 5
*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^2*b^6 - 2*B^2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^3 +
 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*b^6 + 18*A*B*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^3 +
 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) + (b*((32*(A*a^7*b^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8*b^4 -
 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 + B*a^10*b^2 + 2*A*a^11*b + 2*B*a^11*b))/(a^8*b + a^9 -
a^6*b^3 - a^7*b^2) + (32*b*tan(c/2 + (d*x)/2)*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*
a*b^2)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/((a^6*b + a^7 - a^4*b^3 - a^5*
b^2)*(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2)))*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B
*a*b^2))/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2))*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b
- B*a*b^2)*1i)/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2) + (b*((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A
^2*a*b^7 - 2*B^2*a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3*b^5 + 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B
^2*a^2*b^6 - 2*B^2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^3 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B
*a^2*b^6 + 18*A*B*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^3 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2)
 - (b*((32*(A*a^7*b^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8*b^4 - 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*
b^3 + B*a^10*b^2 + 2*A*a^11*b + 2*B*a^11*b))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) - (32*b*tan(c/2 + (d*x)/2)*(-(a
 + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*a*b^2)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b
^4 - 4*a^9*b^3 - 2*a^10*b^2))/((a^6*b + a^7 - a^4*b^3 - a^5*b^2)*(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2)))*(-(
a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*a*b^2))/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2))*
(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*a*b^2)*1i)/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*
b^2))/((64*(8*A^3*b^8 - 4*A^3*a*b^7 - 2*B^3*a^7*b - 20*A^3*a^2*b^6 + 6*A^3*a^3*b^5 + 12*A^3*a^4*b^4 - B^3*a^3*
b^5 + B^3*a^4*b^4 + 3*B^3*a^5*b^3 - 2*B^3*a^6*b^2 - 12*A^2*B*a*b^7 + 6*A*B^2*a^2*b^6 - 5*A*B^2*a^3*b^5 - 17*A*
B^2*a^4*b^4 + 9*A*B^2*a^5*b^3 + 11*A*B^2*a^6*b^2 + 8*A^2*B*a^2*b^6 + 32*A^2*B*a^3*b^5 - 13*A^2*B*a^4*b^4 - 20*
A^2*B*a^5*b^3))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) + (b*((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*
b^7 - 2*B^2*a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3*b^5 + 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^
2*b^6 - 2*B^2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^3 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*
b^6 + 18*A*B*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^3 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) + (b
*((32*(A*a^7*b^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8*b^4 - 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 +
 B*a^10*b^2 + 2*A*a^11*b + 2*B*a^11*b))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) + (32*b*tan(c/2 + (d*x)/2)*(-(a + b)
^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*a*b^2)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4 -
4*a^9*b^3 - 2*a^10*b^2))/((a^6*b + a^7 - a^4*b^3 - a^5*b^2)*(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2)))*(-(a + b
)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*a*b^2))/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2))*(-(a
+ b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b - B*a*b^2))/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2) - (
b*((32*tan(c/2 + (d*x)/2)*(8*A^2*b^8 + B^2*a^8 - 8*A^2*a*b^7 - 2*B^2*a^7*b - 16*A^2*a^2*b^6 + 16*A^2*a^3*b^5 +
 5*A^2*a^4*b^4 - 8*A^2*a^5*b^3 + 4*A^2*a^6*b^2 + 2*B^2*a^2*b^6 - 2*B^2*a^3*b^5 - 5*B^2*a^4*b^4 + 4*B^2*a^5*b^3
 + 3*B^2*a^6*b^2 - 8*A*B*a*b^7 - 4*A*B*a^7*b + 8*A*B*a^2*b^6 + 18*A*B*a^3*b^5 - 16*A*B*a^4*b^4 - 8*A*B*a^5*b^3
 + 8*A*B*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) - (b*((32*(A*a^7*b^5 - 2*A*a^6*b^6 - B*a^12 + 5*A*a^8*b^4
 - 3*A*a^9*b^3 - 3*A*a^10*b^2 + B*a^7*b^5 - 3*B*a^9*b^3 + B*a^10*b^2 + 2*A*a^11*b + 2*B*a^11*b))/(a^8*b + a^9
- a^6*b^3 - a^7*b^2) - (32*b*tan(c/2 + (d*x)/2)*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b -
B*a*b^2)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/((a^6*b + a^7 - a^4*b^3 - a^
5*b^2)*(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2)))*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*b -
 B*a*b^2))/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2))*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*a^2*
b - B*a*b^2))/(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2)))*(-(a + b)^3*(a - b)^3)^(1/2)*(2*A*b^3 + 2*B*a^3 - 3*A*
a^2*b - B*a*b^2)*2i)/(d*(a^9 - a^3*b^6 + 3*a^5*b^4 - 3*a^7*b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**2/(a+b*cos(d*x+c))**2,x)

[Out]

Integral((A + B*cos(c + d*x))*sec(c + d*x)**2/(a + b*cos(c + d*x))**2, x)

________________________________________________________________________________________